Bringing Industry-Grade Code Quality and Practices into
Software Engineering Education (Doctoral Consortium)

Anastasiia Birillo
JetBrains Research
Belgrade, Serbia
Utrecht University
Utrecht, The Netherlands
anastasia.birillo@jetbrains.com

Abstract

Using professional development tools and practices is an essential
part of being a programmer. However, beginners often struggle
with professional tools. In this work, we ask the question: “How
can we adapt professional programming tools to improve
software engineering education?” and aim to find efficient ways
to solve this problem.

CCS Concepts

« Social and professional topics — Student assessment; Soft-
ware engineering education; - Computing methodologies —
Artificial intelligence; - Human-centered computing — Inter-
active systems and tools.

Keywords

Code Quality Assessment, Code Formatting, LLMs, Generative Al
Next-Step Hints

ACM Reference Format:

Anastasiia Birillo. 2024. Bringing Industry-Grade Code Quality and Practices
into Software Engineering Education (Doctoral Consortium). In . ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Nowadays, students often focus only on solving coding tasks while
learning programming. However, to become a programmer, it is not
enough to learn how to code, it is also important to learn how to use
professional tools and apply industry practices. The main research
question of this work is: “How can we adapt professional pro-
gramming tools to improve software engineering education?".
This work is focused on two main aspects: (1) helping students to
write high-quality code by using professional code quality check-
ers and (2) improving the in-IDE experience of learning computer
science by providing personalized help in programming tasks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Related Work

Code Quality Assessment Tools. The issue of assessing code
quality in education has been actively studied before [7, 10, 11].
Several tools have been created that partially reimplement code
quality checks from professional solutions [6, 8, 12, 21]. However,
these tools are focused on a single programming language, often
handle only basic errors typical of novice programmers, and do
not teach students how to handle errors encountered in industry
coding scenarios.

Personalized Feedback in Education. One of the possible ways
to provide personalized help in education is next-step hint genera-
tion, i.e., showing a student what specific small step they need to do
next. There are many ways to generate such hints [13], from pre-
defined rules or templates [9] to using systems based on previous
student submissions [17, 18]. The state-of-the-art works use LLMs
to provide hints to students [14, 16, 19]. However, these works face
a significant challenge to reduce the number of hallucinations and
to get LLMs to follow the prompt instructions strictly [15].

3 Current Work

RQ#1. How can professional code quality checkers help stu-
dents learn to write high-quality code? To introduce code qual-
ity assessment into the educational process, the Hyperstyle tool [5]
was developed, which is built on top of several existing professional
code quality checkers. To make help suitable for students, it adapts
the error messages, groups code quality issues into categories, and
provides a mechanism for summarizing the feedback into a final
code quality score on a four-point scale. The impact of the tool
was evaluated with 594 students from the popular MOOC platform
Hyperskill [1] by comparing the median number of code quality
issues for students before and after integrating the tool. The re-
sults showed circumstantial evidence that the tool contributed to
improving the students’ code quality.

RQ#2. What is the behavior and performance of students
working with professional code quality checkers? Then, to
confirm our findings from the first study, we conducted a large-
scale analysis of student submissions from the Hyperskill platform
to investigate the influence of the developed Hyperstyle tool on
the code quality of student submissions. First, an algorithm for
detecting code quality issues in the templates of programming
tasks was developed to remove irrelevant code quality issues that
students did not make [3], and it was then validated on a dataset of
415 student solutions. This algorithm was used to remove all non-
student code quality issues from the student submissions. Then, we
carried out a code quality analysis of 2.3 million submissions from


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

the Hyperskill platform, where we examined both the most common
types of code quality issues and the dynamics of how students fix
them [20]. The findings confirmed that the developed approach
helps students write high-quality code that does not contain code
quality issues.

RQ#3. What aspects of industry-grade IDEs can be adapted
to enhance the student learning experience? Recently, an in-
IDE learning approach was introduced [4], which is implemented
as a plugin [2] to the JetBrains IDEs, customizing the IDEs for
students. The approach allows students to conduct courses entirely
within this realistic professional environment. Hyperskill uses this
plugin when students switch to the IDE while solving more complex
programming exercises. To define how this format can be adapted to
improve the learning experience, we conducted the first exploratory
study with eight one-hour interviews with students who completed
at least one course within the new in-IDE format. The findings
suggest that overall, students welcome learning within the IDE, as
it allows them to learn in a more realistic scenario. However, one
of the biggest problems for students is the lack of personalized help
during learning. The in-IDE learning format opens up the possibility
of combining static analysis with state-of-the-art approaches that
use LLMs to solve this problem.

RO#4. How can static analysis and LLMs be combined to
improve the quality of automated hints? Then, to improve
students’ in-IDE experience, a next-step hints system was designed
that combines LLMs and static analysis to provide both textual and
code hints for programming tasks. Based on prior work and our
experience, a list of validation criteria was proposed to evaluate
the approach, and two rounds of expert validation were conducted
to improve the overall quality of the hint system. Finally, the next-
step hints were evaluated in a classroom with 14 students from
two universities. The results show that both forms of the hints —
textual and code — were helpful for the students, and the proposed
system helped them to proceed with the coding tasks better.

4 Planned Work

The final part of this thesis focuses on the exploratory evaluation of
the proposed Al next-step hints system design, comparing it with
the hints provided by other state-of-the-art approaches and analyz-
ing students’ behavior when working in the system and receiving
hints. This study will open up possibilities for new directions in
this area, e.g., when exactly we need to show such hints, how we
can adapt hints to the student’s background, etc.

References

[1] 2024. Hyperskill platform. Retrieved October 5, 2024 from https://hyperskill.org/

[2] 2024. JetBrains Academy Plugin. Retrieved October 5, 2024 from https://plugins.
jetbrains.com/plugin/10081-jetbrains-academy

[3] Anastasiia Birillo, Elizaveta Artser, Yaroslav Golubev, Maria Tigina, Hieke Ke-
uning, Nikolay Vyahhi, and Timofey Bryksin. 2023. Detecting Code Quality
Issues in Pre-written Templates of Programming Tasks in Online Courses. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1. 152-158.

[4] Anastasiia Birillo, Mariia Tigina, Zarina Kurbatova, Anna Potriasaeva, Ilya Vlasov,
Valerii Ovchinnikov, and Igor Gerasimov. 2024. Bridging Education and Develop-
ment: IDEs as Interactive Learning Platforms. In Proceedings of the 1st ACM/IEEE
Workshop on Integrated Development Environments. 53-58.

[5] Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev, Artyom Gon-
charov, Elena Tikhomirova, Nikolay Vyahhi, and Timofey Bryksin. 2022. Hy-
perstyle: A tool for assessing the code quality of solutions to programming

—_
2

—
&

[

(10]

[11

[12]

(14

[15

[16

(18]

[19

[20

[21

Anastasiia Birillo

assignments. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education-Volume 1. 307-313.

Hannah Blau and J Eliot B Moss. 2015. FrenchPress gives students automated
feedback on Java program flaws. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education. 15-20.

Jiirgen Borstler, Harald Storrle, Daniel Toll, Jelle Van Assema, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.
2018. "Tknow it when I see it" - Perceptions of Code Quality: ITICSE'17 Working
Group Report. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports. 70-85.

Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-driven auto-
matic hint generation for coding style. In International Conference on Intelligent
Tutoring Systems. Springer, 122-132.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.
2016. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback. International Journal of Artificial Intelligence in Education 27 (02 2016).
Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110-115.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How teachers would
help students to improve their code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. 119-125.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 562-568.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1-43.

Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2023. Codehelp:
Using large language models with guardrails for scalable support in program-
ming classes. In Proceedings of the 23rd Koli Calling International Conference on
Computing Education Research. 1-11.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, and Li
Zhang. 2024. Exploring and evaluating hallucinations in LLM-powered code
generation. arXiv preprint arXiv:2404.00971 (2024).

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J Malan. 2024. Teaching CS50 with Al: leveraging generative artificial intel-
ligence in computer science education. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1. 750~756.

Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. 483-488.
Kelly Rivers and Kenneth R Koedinger. 2013. Automatic generation of program-
ming feedback: A data-driven approach. In The First Workshop on Al-supported
Education for Computer Science (AIEDCS 2013), Vol. 50. 50-59.

Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Generation
for Introductory Programming Using Large Language Models. In Proceedings of
the 26th Australasian Computing Education Conference. 144-153.

Maria Tigina, Anastasiia Birillo, Yaroslav Golubev, Hieke Keuning, Nikolay
Vyahhi, and Timofey Bryksin. 2023. Analyzing the quality of submissions in
online programming courses. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET).
IEEE, 271-282.

Leo C Ureel II and Charles Wallace. 2019. Automated critique of early pro-
gramming antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738-744.


https://hyperskill.org/
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy

	Abstract
	1 Introduction
	2 Related Work
	3 Current Work
	4 Planned Work
	References

