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Abstract

Using professional development tools and practices is an essential
part of being a programmer. However, beginners often struggle
with professional tools. In this work, we ask the question: “How
can we adapt professional programming tools to improve
software engineering education?” and aim to find efficient ways
to solve this problem.
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1 Introduction

Nowadays, students often focus only on solving coding tasks while
learning programming. However, to become a programmer, it is not
enough to learn how to code, it is also important to learn how to use
professional tools and apply industry practices. The main research
question of this work is: “How can we adapt professional pro-
gramming tools to improve software engineering education?".
This work is focused on two main aspects: (1) helping students to
write high-quality code by using professional code quality check-
ers and (2) improving the in-IDE experience of learning computer
science by providing personalized help in programming tasks.
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2 Related Work

Code Quality Assessment Tools. The issue of assessing code
quality in education has been actively studied before [7, 10, 11].
Several tools have been created that partially reimplement code
quality checks from professional solutions [6, 8, 12, 21]. However,
these tools are focused on a single programming language, often
handle only basic errors typical of novice programmers, and do
not teach students how to handle errors encountered in industry
coding scenarios.

Personalized Feedback in Education. One of the possible ways
to provide personalized help in education is next-step hint genera-
tion, i.e., showing a student what specific small step they need to do
next. There are many ways to generate such hints [13], from pre-
defined rules or templates [9] to using systems based on previous
student submissions [17, 18]. The state-of-the-art works use LLMs
to provide hints to students [14, 16, 19]. However, these works face
a significant challenge to reduce the number of hallucinations and
to get LLMs to follow the prompt instructions strictly [15].

3 Current Work

RQ#1. How can professional code quality checkers help stu-
dents learn to write high-quality code? To introduce code qual-
ity assessment into the educational process, the Hyperstyle tool [5]
was developed, which is built on top of several existing professional
code quality checkers. To make help suitable for students, it adapts
the error messages, groups code quality issues into categories, and
provides a mechanism for summarizing the feedback into a final
code quality score on a four-point scale. The impact of the tool
was evaluated with 594 students from the popular MOOC platform
Hyperskill [1] by comparing the median number of code quality
issues for students before and after integrating the tool. The re-
sults showed circumstantial evidence that the tool contributed to
improving the students’ code quality.

RQ#2. What is the behavior and performance of students
working with professional code quality checkers? Then, to
confirm our findings from the first study, we conducted a large-
scale analysis of student submissions from the Hyperskill platform
to investigate the influence of the developed Hyperstyle tool on
the code quality of student submissions. First, an algorithm for
detecting code quality issues in the templates of programming
tasks was developed to remove irrelevant code quality issues that
students did not make [3], and it was then validated on a dataset of
415 student solutions. This algorithm was used to remove all non-
student code quality issues from the student submissions. Then, we
carried out a code quality analysis of 2.3 million submissions from
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the Hyperskill platform, where we examined both the most common
types of code quality issues and the dynamics of how students fix
them [20]. The findings confirmed that the developed approach
helps students write high-quality code that does not contain code
quality issues.

RQ#3. What aspects of industry-grade IDEs can be adapted
to enhance the student learning experience? Recently, an in-
IDE learning approach was introduced [4], which is implemented
as a plugin [2] to the JetBrains IDEs, customizing the IDEs for
students. The approach allows students to conduct courses entirely
within this realistic professional environment. Hyperskill uses this
plugin when students switch to the IDE while solving more complex
programming exercises. To define how this format can be adapted to
improve the learning experience, we conducted the first exploratory
study with eight one-hour interviews with students who completed
at least one course within the new in-IDE format. The findings
suggest that overall, students welcome learning within the IDE, as
it allows them to learn in a more realistic scenario. However, one
of the biggest problems for students is the lack of personalized help
during learning. The in-IDE learning format opens up the possibility
of combining static analysis with state-of-the-art approaches that
use LLMs to solve this problem.

RO#4. How can static analysis and LLMs be combined to
improve the quality of automated hints? Then, to improve
students’ in-IDE experience, a next-step hints system was designed
that combines LLMs and static analysis to provide both textual and
code hints for programming tasks. Based on prior work and our
experience, a list of validation criteria was proposed to evaluate
the approach, and two rounds of expert validation were conducted
to improve the overall quality of the hint system. Finally, the next-
step hints were evaluated in a classroom with 14 students from
two universities. The results show that both forms of the hints —
textual and code — were helpful for the students, and the proposed
system helped them to proceed with the coding tasks better.

4 Planned Work

The final part of this thesis focuses on the exploratory evaluation of
the proposed Al next-step hints system design, comparing it with
the hints provided by other state-of-the-art approaches and analyz-
ing students’ behavior when working in the system and receiving
hints. This study will open up possibilities for new directions in
this area, e.g., when exactly we need to show such hints, how we
can adapt hints to the student’s background, etc.
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