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Abstract

Engaging students with effective learning materials continues to
be a significant challenge in programming education. Analogies
are commonly used to simplify complex topics, enabling learners
to relate unfamiliar concepts to familiar ones. Additionally, visual
representations of these analogies can enhance engagement and
improve the overall learning experience. This work presents a pro-
totype of a novel Al tool that generates analogy-based explanations
and corresponding video animations for programming education.
The tool leverages Large Language Models (LLMs) for analogy gen-
eration and a structured animation workflow for visualization. This
poster invites discussion on the effectiveness of Al-generated edu-
cational content and its implications for programming education.
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1 Introduction

Educational programming material often struggles to make abstract
concepts accessible. Analogies help simplify challenging topics by
linking them to ideas familiar to the student [1, 4]. However, creat-
ing engaging, multimodal instructional materials remains resource-
intensive, making it impractical for most educators [3]. Recent
advancements in Al and NLP present an opportunity to automate
the generation of analogy-driven explanations and corresponding
visualizations. This research explores a multimodal Al-powered
system that generates analogies for programming topics and trans-
forms them into explanatory animations. We introduce a two-part
tool: (1) Analogy Generation Module that uses LLMs to create
textual analogies for programming concepts and (2) Animation
Generation Module, that uses LLMs to generate manim code [5] to
transform these analogies into dynamic, instructional animations.
An example of the generated animation by the tool can be found in
the Figure 1.
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Imagine a light switch in your room. Imagine a light switch in your room.

This switch can

When the switch is OFF, the light is not shining (false). When the switch is ON, the light is shining (true)

(b)

Figure 1: Frames extracted from LLM-generated animation
explaining Boolean as a Light Switch.

(1a) The Boolean is false, meaning the light does not shine.
(1b) The Boolean is true, meaning the light shines.

2 Our Work

Our work explores the question: How to effectively use Al to gen-
erate analogies and animations for programming education, when
evaluated against established analogy-quality metrics, pedagogical
value, and students satisfaction?

This research focuses on three key aspects: (1) analogy genera-
tion, (2) animation creation, and (3) evaluation. We already have
developed the prototype of the tool. To measure the effectiveness of
Al-generated analogies and animations, we designed a multi-phase
evaluation, involving both expert educators and students. Educa-
tors will assess the accuracy, clarity, and pedagogical alignment
of the generated analogies [2] and animations. Students’ feedback
will be collected through surveys to measure engagement, usability,
and cognitive load.

In future work, a comparative study will be performed to quantify
learning outcomes by measuring students’ comprehension and
retention.
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