Multimodal Analogy Generation in Programming Education

Yuri Noviello
Delft University of Technology
Delft, The Netherlands
y.noviello@tudelft.nl

Abstract

Engaging students with effective learning materials continues to
be a significant challenge in programming education. Analogies
are commonly used to simplify complex topics, enabling learners
to relate unfamiliar concepts to familiar ones. Additionally, visual
representations of these analogies can enhance engagement and
improve the overall learning experience. This work presents a pro-
totype of a novel Al tool that generates analogy-based explanations
and corresponding video animations for programming education.
The tool leverages Large Language Models (LLMs) for analogy gen-
eration and a structured animation workflow for visualization. This
poster invites discussion on the effectiveness of Al-generated edu-
cational content and its implications for programming education.

CCS Concepts

« Computing methodologies — Artificial intelligence; « Applied
computing — Education; - Human-centered computing —
Visualization.

Keywords

Analogy Generation, Animation Generation, Programming Educa-
tion, Artificial Intelligence, Multimodal Learning

1 Introduction

Educational programming material often struggles to make abstract
concepts accessible. Analogies help simplify challenging topics by
linking them to ideas familiar to the student [1, 4]. However, creat-
ing engaging, multimodal instructional materials remains resource-
intensive, making it impractical for most educators [3]. Recent
advancements in Al and NLP present an opportunity to automate
the generation of analogy-driven explanations and corresponding
visualizations. This research explores a multimodal Al-powered
system that generates analogies for programming topics and trans-
forms them into explanatory animations. We introduce a two-part
tool: (1) Analogy Generation Module that uses LLMs to create
textual analogies for programming concepts and (2) Animation
Generation Module, that uses LLMs to generate manim code [5] to
transform these analogies into dynamic, instructional animations.
An example of the generated animation by the tool can be found in
the Figure 1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2025, Nijmegen, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1569-3/2025/06

https://doi.org/10.1145/3724389.3730781

Anastasiia Birillo
JetBrains Research
Belgrade, Serbia
anastasia.birillo@jetbrains.com

Gosia Migut
Delft University of Technology
Delft, The Netherlands
m.a.migut@tudelft.nl

Imagine a light switch in your room. Imagine a light switch in your room.

This switch can

When the switch is OFF, the light is not shining (false). When the switch is ON, the light is shining (true)

(b)

Figure 1: Frames extracted from LLM-generated animation
explaining Boolean as a Light Switch.

(1a) The Boolean is false, meaning the light does not shine.
(1b) The Boolean is true, meaning the light shines.

2 Our Work

Our work explores the question: How to effectively use Al to gen-
erate analogies and animations for programming education, when
evaluated against established analogy-quality metrics, pedagogical
value, and students satisfaction?

This research focuses on three key aspects: (1) analogy genera-
tion, (2) animation creation, and (3) evaluation. We already have
developed the prototype of the tool. To measure the effectiveness of
Al-generated analogies and animations, we designed a multi-phase
evaluation, involving both expert educators and students. Educa-
tors will assess the accuracy, clarity, and pedagogical alignment
of the generated analogies [2] and animations. Students’ feedback
will be collected through surveys to measure engagement, usability,
and cognitive load.

In future work, a comparative study will be performed to quantify
learning outcomes by measuring students’ comprehension and
retention.

References

[1] Seth Bernstein, Paul Denny, Juho Leinonen, Lauren Kan, Arto Hellas, Matt
Littlefield, Sami Sarsa, and Stephen Macneil. 2024. "Like a Nesting Doll": Ana-
lyzing Recursion Analogies Generated by CS Students Using Large Language
Models. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2024). New York, NY, USA, (July 2024), 122-128.
https://dl.acm.org/doi/10.1145/3649217.3653533.

[2] Bhavya Bhavya, Chris Palaguachi, Yang Zhou, Suma Bhat, and ChengXiang
Zhai. 2024. Long-Form Analogy Evaluation Challenge. In Proceedings of the 17th
International Natural Language Generation Conference: Generation Challenges.
Simon Mille and Miruna-Adriana Clinciu, (Eds.) Tokyo, Japan, (Sept. 2024), 1-16.
https://aclanthology.org/2024.inlg- genchal.1/.

[3] Bettyjo Bouchey, Jill Castek, and John Thygeson. 2021. Multimodal Learning. en.
In Innovative Learning Environments in STEM Higher Education: Opportunities,
Challenges, and Looking Forward. Jungwoo Ryoo and Kurt Winkelmann, (Eds.)
Cham, 35-54. https://doi.org/10.1007/978-3-030-58948-6_3.

[4] George Lakoff and Mark Johnson. 1980. Metaphors We Live By. Mark Johnson,
(Ed.) Chicago.

[5] The Manim Community Developers. 2025. Manim — Mathematical Animation
Framework. (Jan. 2025). https://www.manim.community/.

https://orcid.org/0009-0006-5846-7756
https://orcid.org/0000-0003-2269-8211
https://orcid.org/0000-0002-4120-5454
https://doi.org/10.1145/3724389.3730781
https://dl.acm.org/doi/10.1145/3649217.3653533
https://aclanthology.org/2024.inlg-genchal.1/
https://doi.org/10.1007/978-3-030-58948-6_3
https://www.manim.community/

	Abstract
	1 Introduction
	2 Our Work

